

Rubicon Java

Rubicon Java is a bridge between the Java Runtime Environment and Python. It
enables you to:

	Instantiate objects defined in Java,

	Invoke static and instance methods on objects defined in Java,

	Access and modify static and instance fields on objects defined in Java, and

	Write and use Python implementations of interfaces defined in Java.

It also includes wrappers of the some key data types from the Java standard
library (e.g., java.lang.String).

Table of contents

Tutorial

Get started with a hands-on introduction for beginners

How-to guides

Guides and recipes for common problems and tasks, including how to contribute

Background

Explanation and discussion of key topics and concepts

Reference

Technical reference - commands, modules, classes, methods

Community

Rubicon is part of the BeeWare suite [http://beeware.org]. You can talk to the community through:

	@pybeeware on Twitter [https://twitter.com/pybeeware]

	beeware/general on Gitter [https://gitter.im/beeware/general]

Tutorials

These tutorials are step-by step guides for using Rubicon Java.

	Your first bridge

	Writing your own class

Tutorial 1 - Your first bridge

In Your first bridge, you will use Rubicon to invoke an existing Java
library on your computer.

Tutorial 2 - Writing your own class

In Writing your own class, you will write a Python class, and expose it to the
Java runtime.

Your first bridge

In this example, we’re going to use Rubicon to access the Java standard
library, and the java.net.URL class in that library. java.net.URL is
the class used to represent and manipulate URLs.

This tutorial assumes you’ve set up your environment as described in the
Getting started guide.

Accessing java.net.URL

TODO

Time to take over the world!

You now have access to any method, on any class, in any library, in the
entire Java ecosystem! If you can invoke something in Java, you
can invoke it in Python - all you need to do is:

	load the library with ctypes;

	register the classes you want to use; and

	Use those classes as if they were written in Python.

Next steps

The next step is to write your own classes, and expose them into the Java
runtime. That’s the subject of the next tutorial.

Writing your own class

Eventually, you’ll come across an Java API that requires you to provide
a class instance (usually one implementing an interface) as an argument.
For example, when using Java GUI classes, you often need to define “handler”
classes to describe how a GUI element will respond to mouse clicks and key
presses.

TODO

Next steps

???

How-to Guides

How-to guides are recipes that take the user through steps in key subjects.
They are more advanced than tutorials and assume a lot more about what the user
already knows than tutorials do, and unlike documents in the tutorial they can
stand alone.

	Getting Started

	How to contribute code to Rubicon

	Contributing to the documentation

Getting Started

TODO

How to contribute code to Rubicon

If you experience problems with Rubicon, log them on GitHub [https://github.com/beeware/rubicon-java/issues]. If you want
to contribute code, please fork the code [https://github.com/beeware/rubicon-java] and submit a pull request [https://github.com/beeware/rubicon-java/pulls].

Set up your development environment

The recommended way of setting up your development environment for Rubicon is
to install a virtual environment, install the required dependencies and start
coding:

$ python3 -m venv venv
$ source venv/bin/activate.sh
(venv) $ python -m pip install --upgrade pip
(venv) $ python -m pip install --upgrade setuptools
(venv) $ git clone https://github.com/beeware/rubicon-java.git
(venv) $ cd rubicon-objc
(venv) $ python -m pip install -e .

Rubicon uses tox to describe it’s testing environment. To install tox, run:

(venv) $ python -m pip install tox

You can then run the full test suite:

(venv) $ tox

By default this will run the test suite multiple times, once on each Python
version supported by Rubicon, as well as running some pre-commit checks of
code style and validity. This can take a while, so if you want to speed up
the process while developing, you can run the tests on one Python version only:

(venv) $ tox -e py

Or, to run using a specific version of Python:

(venv) $ tox -e py37

substituting the version number that you want to target. You can also specify
one of the pre-commit checks flake8, docs or package to check code
formatting, documentation syntax and packaging metadata, respectively.

Now you are ready to start hacking on Rubicon. Have fun!

Contributing to the documentation

Here are some tips for working on this documentation. You’re welcome to add
more and help us out!

First of all, you should check the Restructured Text (reST) and Sphinx
CheatSheet [http://thomas-cokelaer.info/tutorials/sphinx/rest_syntax.html] to
learn how to write your .rst file.

Create a .rst file

Look at the structure and choose the best category to put your .rst file. Make
sure that it is referenced in the index of the corresponding category, so it
will show on in the documentation. If you have no idea how to do this, study
the other index files for clues.

Build documentation locally

To build the documentation locally, set up a development environment, and run:

$ tox -e docs

The output of the file should be in the build/sphinx/html folder. If there are
any markup problems, they’ll raise an error.

Background

Want to know more about the Rubicon project, it’s history, community, and
plans for the future? That’s what you’ll find here!

	Why “Rubicon”?

	The Rubicon Java Developer and User community

	Success Stories

	Release History

	Rubicon Roadmap

Why “Rubicon”?

So… why the name Rubicon?

The Rubicon is a river in Italy. It was of importance in ancient times as the
border of Rome. The Roman Army was prohibited from crossing this border, as that
would be considered a hostile act against the Roman Senate.

In 54 BC, Julius Caesar marched the Roman Army across the Rubicon, signaling
his intention to overthrow the Roman Senate. As he did so, legend says he
uttered the words “Alea Iacta Est” - The die is cast. This action led to Julius
being crowned as Emperor of Rome, and the start of the Roman Empire.

Of course, in order to cross any river, you need to use a bridge.

This project provides a bridge between the open world of the Python
ecosystem, and the Java ecosystem.

The Rubicon Java Developer and User community

Rubicon Java is part of the BeeWare suite [http://beeware.org]. You can talk to the
community through:

	@pybeeware on Twitter [https://twitter.com/pybeeware]

	The beeware/general [https://gitter.im/beeware/general] channel on Gitter.

Code of Conduct

The BeeWare community has a strict Code of Conduct [http://beeware.org/contributing/index.html]. All users and
developers are expected to adhere to this code.

If you have any concerns about this code of conduct, or you wish to report a
violation of this code, please contact the project founder Russell Keith-Magee.

Contributing

If you experience problems with Rubicon, log them on GitHub [https://github.com/beeware/rubicon-java/issues]. If you
want to contribute code, please fork the code [https://github.com/beeware/rubicon-java] and submit a pull request [https://github.com/beeware/rubicon-java/pulls].

Success Stories

Want to see examples of Rubicon in use? Here’s some:

Release History

0.2.6 (2022-01-06)

Features

	Added support for arrays in arguments and return values. (#55)

	Added the ability to cast Java objects from one class to another. (#58)

	Local JNI Instances can be converted into global JNI instances using __global__() (#59)

	Added support for Python 3.9 and 3.10. (#62, #66)

	Methods that accept a Java NULL as an argument are now supported. (#63)

	Methods that return NULL now return typed NULL objects. (#67)

0.2.5 (2021-01-05)

Features

	Added support for passing Python lists into Java numeric array types (#53)

0.2.4 (2020-08-06)

Features

	Added support for implementing Java interfaces that return bool. (#52)

0.2.3 (2020-07-27)

Bugfixes

	The asyncio event loop can now start on Python 3.6. (#51)

0.2.2 (2020-07-03)

Features

	Python’s AsyncIO event loop is now integrated with the Android event loop.
(#40, #49)

	sys.stdout & sys.stderr are now routed to the Android debug log using
an android Python module. (#44)

Misc

	#45, #46, #47, #48

0.2.1 (2020-06-17)

Features

	Add the ability to implement Java interface methods that return int. (#42)

Misc

	#31, #37

0.2.1 (2020-06-17)

Features

	Add the ability to implement Java interface methods that return int. (#42)

Misc

	#31, #37

0.2.0

Changes since v0.1.0:

	Port to Python 3, removing Python 2 support.

	Add support to Linux, allowing it to run on both macOS and Linux.

	Enable cross-compiling by adding support in the Makefile for specifying the compiler to use, the Python version whose headers to use, and to not require executing Python code during the build process.

	Adjust Python.run() to take a module name, not a filename.

	Add more documentation, although some is skeletal. Improvements to this are welcome.

	Add towncrier [https://pypi.org/project/towncrier/] support. Future releases will rely on towncrier for release notes.

	Rename pybee to beeware.

	Add GitHub Actions configuration for testing on macOS & Linux and Python 3.5, 3.6, 3.7, and 3.8.

	Support the JAVA_HOME environment variable to choose a Java compiler.

This version specifically targets Java 8 to simplify Android support.

Thanks to the contributors, listed by GitHub username in alphabetical order:

	@freakboy3742

	@glasnt

	@jacebrowning

	@paulproteus

	@RomanKharin

Rubicon Roadmap

Reference

This is the technical reference for public APIs provided by Rubicon.

Index

 _static/images/rubicon.png

_static/rubicon.png

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Rubicon Java

_static/file.png

